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Abstract—Given the increase in data generation, as many
algorithms have become available in recent years, the algorithm
recommendation problem has attracted increasing attention in
Machine Learning. This problem has been addressed in the
Machine Learning community as a learning task at the meta-
level where the most suitable algorithm has to be recommended
for a specific dataset. Since it is not trivial to define which
characteristics are the most useful for a specific domain, several
meta-features have been proposed and used, increasing the meta-
data meta-feature dimension. This study investigates the influence
of dimensionality reduction techniques on the quality of the
algorithm recommendation process. Experiments were carried
out with 15 algorithm recommendation problems from the Aslib
library, 4 meta-learners, and 3 dimensionality reduction tech-
niques. The experimental results showed that linear aggregation
techniques, such as PCA and LDA, can be used in algorithm
recommendation problems to reduce the number of meta-features
and computational cost without losing predictive performance.

Index Terms—Dimensionality reduction, Algorithm recommen-
dation, Meta-learning

I. INTRODUCTION

Due to the increase of using automated systems, Machine
Learning (ML) has achieved high popularity in recent years,
becoming part of several tools to analyze data and extract
useful information from it. As a consequence, the volume of
ML applications and experiments have increased, leading to
the expansion of Meta-learning (MtL) [1]. MtL investigates
the relationship between problems and the performance of ML
algorithms when applied to them. This relationship can provide
useful information to select the most suitable algorithm for
new datasets, commonly referred to as algorithm recommen-
dation problem [2].

Many researchers have been proposing recommender sys-
tems based on MtL for a wide range of applications, such
as to recommend algorithms, to suggest their hyperparameter
settings [3], to select noise detection techniques [4] and to
speed-up the convergence of optimization techniques [5].

The success of a recommender system depends on how well
these problems (datasets) are represented. The MtL literature
provides several sets of meta-features proposed to extract
data characteristics, varying from simple dataset description
measures, like the number of classes and statistics [6], to data
complexity measures [3]. More recent approaches go further
and propose the systematic and standardized generation of

meta-features [7]. Since it is not trivial to define which meta-
features better describe the problem represented by a dataset,
associated with the many alternatives that can be used to
describe a dataset, a large number of meta-features have been
proposed. This has brought the “curse of dimensionality” to
the meta-level. Besides, it is not difficult to find meta-features
computed by different descriptors to be strongly correlated.

Dimensionality Reduction (DR) procedures have been used
to reduce the number of features of high-dimensional data
to manageable low-dimensional spaces in which analysis can
be more effectively performed. They can be divided into
two different approaches: Feature Selection (FS) and Feature
Extraction (FE) [8] . FS techniques try to find a representa-
tive subset of the original features using filters, wrappers or
embedding processes. They have extensively been explored in
the literature [9].

On the other hand, FE transforms data in the original space
of features to a space of fewer dimensions. Principal Compo-
nent Analysis (PCA) [10] and Linear Discriminant Analysis
(LDA) [11] are two traditional FE techniques used to perform
linear DR. Recently, a large number of techniques that can
deal with complex nonlinear data have been proposed, such as
the t-Distributed Stochastic Neighbor Embedding (tSNE) [12].
Although DR have been employed for many domains [13],
there is a lack of studies of the effect of these FE techniques
in the predictive performance of meta-models induced by ML
algorithms in algorithm recommendation tasks.

This study investigates the influence of Dimensionality
Reduction (DR) techniques on the predictive performance
of ML algorithms employed in algorithm recommendation
tasks. For such, experiments were carried out with 15 meta-
datasets from “Aslib” repository [2], 3 DR techniques, and 4
different algorithms as meta-learners. The results obtained by
each dimensionality reduction technique were also compared
with the results obtained using original meta-datasets. In the
experiments, the meta-learners were evaluated using default
and tuned hyperparameters.

This paper is structured as follows. Section II presents the
background on DR and the related works in MtL; section III
describes the experimental methodology; the results are dis-
cussed in section IV; finally, the conclusions and future works
are presented.



II. BACKGROUND

The algorithm recommendation problem was firstly defined
by [14]. In [14], the authors defined the idea of selecting an
algorithm from a portfolio of options as follows: Given a set
P of problem instances from a distribution D; a space of
algorithms A; and a performance measure M : P ×A → R;
the algorithm recommendation problem is to find a mapping
m : P → A that optimizes the expected performance measure
for the instances distributed according to D. In practice, there
are some ways to find this mapping between algorithms and
problems, and one of them is through the Meta-learning
(MtL) [1].

Meta-learning (MtL) is a sub-area of ML that investigates
how to exploit past learning experiences in a particular task to
improve models and solutions by adapting learning algorithms
and data mining processes [1]. This is accomplished using
some features extracted from a dataset, named meta-features,
to represent the main characteristics of a dataset and the perfor-
mance of ML algorithms when applied to it. This relationship
can provide useful information to select the most suitable ML
algorithm for new unseen datasets. Thus, ML algorithms are
applied to a meta-dataset, whose examples have meta-features
as predictive attributes and algorithm performance as a target
attribute, to induce a meta-model.

To distinguish this learning process from the conventional
application of ML algorithms, it is named meta-level learning.
When a ML algorithm recommended by the meta-model
is applied to a new dataset, the learning is named base-
level learning. Furthermore, the knowledge obtained from past
learning tasks is called “meta-knowledge”.

It is often exploited by extracting many meta-features from
the datasets and using a learning algorithm to related them
to models performance. Commonly measures used to extract
these characteristics are grouped into different sets, such as:
simple, statistical and information-theoretic measures; model-
based; landmarking; data complexity measures, and derived
from learning curves [15]. On the other hand, some studies
have used meta-features based on properties of the problem
domain. For instance, [16] used measures related to proposi-
tional satisfiability problem (SAT) problems, such as number
of clauses and number of variables.

The suitability of a set of meta-features for a recommen-
dation task is data conformation and problem dependent.
Usually, they are extracted in an ad-hoc manner, but more
recently systematically generated [7]. However, in both, a large
number of meta-features are generated, bringing the “curse of
dimensionality” to the meta-level.

A. Dimensionality reduction techniques

The human capacity to extract information from tables is
limited as the table dimension increases [17]. An alternative
to overcome this limitation is the use of DR techniques, which
allow the visualization of high-dimensional data [17]. In ML,
DR is mainly used to attenuate the curse of dimensionality
and other undesired properties of high-dimensional spaces. DR
techniques project the data from a high to a low dimensional

feature space. Besides, DR speed-up the learning process and
can improve the predictive performance of the induced model.

DR techniques can be categorized as linear or non-linear.
The former project the data into a low-dimensional space by
a linear transformation, preserving the data linear structures.
The benefits of these methods are the easy interpretation
because they have solid mathematics definitions, and the fast
computation [10], [18].

LDA and PCA are popular examples of linear DR tech-
niques with these characteristics. LDA projects data into a low-
dimensional space by maximizing the separation of classes in
a supervised way, while PCA performs a rigid rotation by
maximizing the data variance captured in a non-supervised
way [18].

While linear methods are relatively simple to understanding
and computationally inexpensive, they can miss non-linear
structures present in the data. On the other hand, non-linear DR
techniques, such as tSNE, are computationally more expensive
but can deal with complex nonlinear data conformations. tSNE
captures non-linear structures by model similarities between
data points on joint probabilities and place data points that
are similar nearby in the low-dimensional projection [12].

In [19], the authors used PCA with Support Vector Ma-
chine (SVM) to extract features from financial datasets. A
benchmark of seven DR techniques was performed by [20]
using SVMs and k-Nearest Neighbors (kNN) algorithms to
classify and visualize sentimental data. PCA was also used
by [21] and [5] for feature extraction. The former used PCA
for multidimensional unlabeled datasets for change detection
while the latter for an Automated Machine Learning (AutoML)
tool.

Some studies on algorithm recommendation used DR tech-
niques to improve models predictive performance [22] and for
meta-data visualization [23]. However, we did not found any
papers evaluating different DR techniques, including PCA, for
the algorithm recommendation problem. In some studies, such
as [7], the authors proposed to deal with the dimensionality
problem of meta-features using correlation and feature selec-
tion methods, such as ReliefF [24].

III. EXPERIMENTAL METHODOLOGY

This section describes the methodology adopted in the
experiments carried out to evaluate the DR techniques for
algorithm recommendation problems. In addition, it looks for
patterns that can support the decision of whether to apply DR
and, if needed, which technique should be applied.

Figure 1 provides an overview of the experimental method-
ology adopted. Firstly, the original meta-datasets are prepro-
cessed by the DR techniques. Then, these meta-datasets are
used by different meta-learners for the induction of predictive
models. During the learning process, the hyperparameters of
the selected algorithms were tuned using a Random Search
(RS). The meta-models are applied to the test subset of each
meta-dataset and their predictive performance are compared.
The next subsections detail these steps.



Fig. 1. Experimental methodology adopted to benchmark dimensionality reduction techniques.

A. Meta-datasets

In the experiments we used 15 algorithm recommendation
problems from the Aslib repository [2]. These meta-datasets
are characterized based on problem domain properties, such as
propositional satisfiability problem (SAT), traveling salesman
problem (TSP), and quantified boolean formula (QBF).

Aslib meta-datasets can be used in classification, regression
and clustering tasks. Some of these meta-datasets needed to
be preprocessed before the application of DR techniques.
Constant and high correlated (corr beq 0.95) meta-features
were removed. The remaining meta-features were normalized
with Z-Score.

In the experiments we adopted a stratified nested-CV resam-
pling method, considering 10 outer folds (see Section III-C).
Thus, meta-classes with very few meta-examples (< 10),
referred to as tiny meta-classes, were also dealt with. If the
total of meta-examples of these tiny meta-classes exceeds 10,
they are joint in a new larger meta-class; otherwise they are
discarded. From the available meta-datasets, we selected those
with only numerical meta-features, since categorical meta-
features would require a more complex preprocessing. Table I
summarizes the main characteristics of the 15 meta-datasets.

TABLE I
CLASSIFICATION ASLIB META-DATASETS USED IN THE EXPERIMENTS.

FOR EACH META-DATASET IT IS PRESENTED THE NUMBER OF
META-EXAMPLES (N), THE NUMBER OF META-FEATURES (F), THE

NUMBER OF META-CLASSES (C) AND WHETHER THERE ARE MISSING
VALUES (NAS).

Nro Name N F C NAs

1 ASP-POTASSCO 1294 140 11 True
2 BNSL-2016 1179 94 8 -
3 CPMP-2015 527 23 4 -
4 CSP-2010 2024 68 2 True
5 CSP-MZN-2013 4636 118 10 -
6 GRAPHS-2015 5723 37 6 -
7 MAXSAT-PMS-2016 596 45 12 -
8 MAXSAT-WPMS-2016 630 54 10 -
9 MAXSAT12-PMS 876 32 6 -

10 MAXSAT15-PMS-INDU 601 58 16 -
11 MIP-2016 214 121 3 -
12 PROTEUS-2014 4021 33 22 True
13 QBF-2011 1368 47 5 -
14 QBF-2014 1248 47 13 True
15 SAT03-16 INDU 2000 140 10 True

Data were retrieved from the Aslib repository using the aslib

R package1, while the classification meta-datasets were created
using the llama R package2. Preprocessing and learning tasks
were performed by the mlr3.

B. Dimensionality reduction techniques

Three DR techniques were considered for the experiments:
• Linear Discriminant Analysis (LDA) [11], also known as

discriminant function analysis, is a statistical technique
to find a linear combination of features that characterizes
or separates two or more classes of objects;

• Principal Component Analysis (PCA) [10] is a technique
that uses an orthogonal transformation to convert a set
of possible features into linearly uncorrelated features,
called principal components;

• t-Distributed Stochastic Neighbor Embedding
(tSNE) [12], is a non-linear technique that is particularly
well-suited for embedding high-dimensional data into
a space of two or three dimensions. It models each
high-dimensional object in such a way that similar
objects are modeled by nearby points while dissimilar
objects are modeled by distant points.

Different values of the variance explained by the principal
components of PCA were considered in the experiments. For
instance, PCA.90 means that the meta-dataset contains the
principal components that explain 90% of the data variance.
Similarly, the tSNE was evaluated considering different re-
duction rates, e.g., TSNE.30 represents tSNE computed in a
meta-dataset, reducing the number of meta-features to 30% of
the original number of meta-features.

C. Algorithms and hyperparameter tuning

To investigate the effect of the DR techniques four clas-
sification algorithms were used as meta-learners: k-Nearest
Neighborss (kNNs), Support Vector Machines (SVMs), Ran-
dom Forest (RF) and Classification and Regression Tree
(CART) (with the ‘rpart’ implementation). Except for the
experiments with kNN, all the algorithms were also used in
the original Aslib study [2], which did not investigate DR
techniques.

1https://CRAN.R-project.org/package=aslib
2https://CRAN.R-project.org/package=llama
3https://cran.r-project.org/web/packages/mlr/index.html

https://CRAN.R-project.org/package=aslib
 https://CRAN.R-project.org/package=llama
https://cran.r-project.org/web/packages/mlr/index.html


The meta-learners’ hyperparameters were tuned by an Ran-
dom Search (RS) [25] technique. Tuning was performed
following a stratified nested Cross-validations (CVs) [26]
resampling method: 3 inner folds are used to estimate the
validation predictive performance, while 10 outer folds assess
the test performance. The budget for tuning was set to 250
steps per outer repetition. The tuning task was also executed
10 times using different seeds. Validation and test perfor-
mances were assessed using the Balanced per class Accuracy
(BAC) measure [27], since data collection contains binary
and multiclass classification problems and some of them were
unbalanced. The hyperparameter spaces of the meta-learners
are described in Table II.

IV. RESULTS AND DISCUSSIONS

The main experimental results evaluating the DR techniques
for algorithm recommendation are described next.

A. Overall comparison

An overview of the main results can be given by the Critical
Difference (CD) diagram in Figure 2. The diagram compares
the BAC values obtained by the DR techniques for all meta-
datasets and meta-learners according to the Friedman-Nemenyi
test (α = 0.05). According to the figure, the best results were
achieved using the original meta-datasets, PCA.95 and LDA,
and there were no significant differences among them. The
tSNE setups presented the worst BAC values and were not
able to improve the predictive performance of the algorithms
regarding the linear techniques. The best tSNE variant, namely
tSNE.10, was the unique setup with comparable results to
PCA (considering all % of variance) and LDA. Since we
intend to investigate the behavior of different DR techniques,
hereafter we limited our analyzes to the datasets preprocessed
by PCA.95, LDA, tSNE.10 and the original dataset.

B. Predictive performance improvement

In addition to the overall comparison, Figure 3 shows the
average improvement of the predictive performance obtained
by the meta-learners (rows) for each meta-dataset (columns)
preprocessed by the DR techniques. The values in each cell are
the performance differences considering the best variants of
the DR techniques and the original meta-dataset. Bold numbers
indicate significant differences according to the Wilcoxon
paired-test with α − 0.05. The white cells denote cases
where the best results were obtained from the original meta-
datasets. In the other cases, different colors indicate which DR
technique outperformed all the others and the original meta-
dataset.

In general, most of the improvements were very small,
except in the “MIP-2016” meta-dataset. This meta-dataset
has three classes and most of its meta-features are linearly
correlated. A possible reason for these results is that meta-
features’ relations and patterns become more evident after the
preprocessing performed by the DR techniques, resulting in
the predictive performance improvements.

Among the four algorithms selected as meta-learners, kNN
and SVM were more sensitive to the use of DR techniques:
positive improvements were obtained in 12 of the 15 meta-
datasets when using reduced meta-datasets. On the other hand,
CART and RF were not often affected by the techniques.
This might be due to the fact that these algorithms have
an embedded feature selection mechanism during the model
induction. This embedded DR process may be harmed by the
use of “external” DR techniques.

Comparing the DR techniques, LDA outperformed PCA
and tSNE in 18/60 (30%) and 11 of them with statistical
significance. PCA was the best in 13/60 (21.67%) of the
cases, 5 of them with statistical significance and are usually
associated with improvement of the kNN meta-learner. Finally,
tSNE was the best DR technique in 9/60 (15%), 4 of them
statistically significant, all of them for the SVM meta-learner.
In the remaining 20/60 (33.33%) cases, all DR resulted in the
induction of meta-models with statistically lower predictive
performance.

In short, the experimental results suggest that the use of
DR techniques at the meta-level benefit algorithms without
an embedded feature selection mechanism. Despite being a
simple technique, LDA can capture the linearity between
features and improve models independently of the algorithm
used as meta-learner. In addition, due to its high computational
cost and low effect in the predictive performance, tSNE should
not be used.

C. Dimensionality Reduction

On average, 50.9% of the meta-features were removed in
the preprocessing step because of high correlation (corr) (i.e.,
corr ≥ |0.95|). Thus, more than half of the information on
these meta-datasets were redundant. After removing the corre-
lated attributes, the DR techniques were applied in each meta-
dataset. Figure 4 shows the average meta-feature reduction
percentage for the different setups of the DR techniques. The
horizontal line over each bar represents the standard deviation
for each technique.

tSNE.10 was the DR technique that achieved the highest
feature space reduction (around 90%). However, in general,
it usually reduced the predictive performance of the meta-
learners, when compared with the original meta-datasets (Sec.
IV-B). LDA reduced the feature space by 75.0%, but with a
large standard deviation. This occurred because LDA was set
to reduce the number of meta-features to C − 1, where C is
the number of classes of the problem. PCA reduced around
60%, 54%, 46% and 33% of the feature space, for 80%, 85%,
90% and 95% of the variability explained, respectively.

Regarding the computational cost, Figure 5 shows the box-
plots of the average time spent by each DR technique to pre-
process datasets. The y-axis shows the runtime in milliseconds
(log scale). Figure shows that tSNE was computationally much
more expensive than LDA and PCA, even tSNE providing
the highest reduction in data dimension. This cost can be
prohibitive for many applications, since it took almost one
hour, in the worst case, for each meta-dataset. On the other



TABLE II
ALGORITHMS USED AS META-LEARNERS AND THEIR HYPERSPACES EXPLORED IN EXPERIMENTS. THE NOMENCLATURE FOLLOWS THEIR RESPECTIVE R

PACKAGES.

Algorithm Symbol Hyperparameter Range Type Default Package

CART

cp complexity parameter (0.0001, 0.1) real 0.01

rpartminsplit minimum number of instances in a
[1, 50] integer 20node for a split to be attempted

minbucket minimum number of instances in a leaf [1, 50] integer 7

maxdepth maximum depth of any node of
[1, 30] integer 30the final tree

SVM C regularized constant [2−15, 215] real 1 e1071
γ width of the Gaussian kernel [2−15, 215] real 1/N

RF ntree number of trees [20, 210] integer 500 randomForestnodesize minimum node size of the decision trees {1, 20} integer 1

KNN k number of nearest neighbors {1, 50} integer 7 kknn

CD=1.75

1 2 3 4 5 6 7 8 9 10

Original
PCA.95

LDA
PCA.90
PCA.85

TSNE.50
TSNE.30
TSNE.20
TSNE.10
PCA.80

Fig. 2. Critical Difference diagram generated with the different configurations of DR techniques and the original meta-dataset. We set α = 0.05 for all
experiments.

Fig. 3. Balanced per class accuracy improvement obtained in each meta-dataset exploring data dimensionality reduction techniques. Bold numbers indicate
situations where statistical differences were obtained by a paired Wilcoxon test with α = 0.05.

hand, PCA was the fastest technique, running in less than one
second. Finally, LDA was slightly more expensive than PCA,
but also run in less than one second.

V. CONCLUSIONS

This paper investigated the use of data DR techniques for
algorithm selection problems. Experiments were carried out
with 15 algorithm recommendation meta-datasets from the
Aslib library, 4 meta-learners, and 3 different DR techniques
following different approaches. It is worth to note that these

meta-datasets have many correlated attributes (on average
50.9%), thus some preprocessing procedures were necessary
to attenuate the “curse of dimensionality” and other undesired
properties of high-dimensional spaces.

The results showed that linear techniques, namely PCA and
LDA, can be used in algorithm recommendation problems
to reduce the number of meta-features, with low or none
performance loss (mainly for SVM and kNN) and are com-
putationally inexpensive. On the other hand, the non-linear
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technique tSNE presented poor results and presented a high
computational cost. Future work includes the expansion of the
experimental setup adding more meta-datasets, DR techniques
and the development of an automated data cleansing recom-
mender system, exploring other preprocessing techniques.
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A. Fréchette, H. H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and
J. Vanschoren, “Aslib: A benchmark library for algorithm selection,”
Artif. Intell., vol. 237, pp. 41–58, 2016.

[3] A. C. Lorena, A. I. Maciel, P. B. C. de Miranda, I. G. Costa, and R. B. C.
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